Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Chloropyrimidin-4-amine

Gerard A. van Albada, ${ }^{\text {a }}$ Mohamed Ghazzali, ${ }^{{ }^{\text {b }} \text { * }}$ Khalid Al-Farhan ${ }^{\text {b }}$ and Jan Reedijk ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
Correspondence e-mail: mghazzali@ksu.edu.sa

Received 7 December 2011; accepted 27 December 2011
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.035 ; w R$ factor $=0.092$; data-to-parameter ratio $=15.8$.

In the title pyrimidine derivative, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClN}_{3}$, the 2-chloro and 4 -amino substituents almost lie in the mean plane of the pyrimidine ring, with deviations of 0.003 (1) \AA for the Cl atom, and 0.020 (1) \AA for the N atom. In the crystal, molecules are linked via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming inversion dimers. These dimers are further linked via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming an undulating two-dimensional network lying parallel to (100).

Related literature

For compounds related to pyrimidin-4-amine, see: Van Albada et al. (1999, 2003); Van Meervelt \& Uytterhoeven (2003); Kožíšek et al. (2005). For the agricultural and pharmaceutical relevance of 2-chloropyrimidin-4-amine, see: Zunszain et al. (2005). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClN}_{3}$
$M_{r}=129.55$
Monoclinic, $P 2_{1} / c$
$a=3.83162(19) \AA$
$b=11.8651(7) \AA$

$$
c=12.7608(7) \AA
$$

$$
\begin{aligned}
& \beta=100.886(2)^{\circ} \\
& V=569.70(5) \AA^{3}
\end{aligned}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation

$\mu=0.55 \mathrm{~mm}^{-1}$	$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$
$T=294 \mathrm{~K}$	
Data collection	
Rigaku R-AXIS RAPID	9506 measured reflections
\quad diffractometer	1296 independent reflections
Absorption correction: multi-scan	962 reflections with $I>2 \sigma(I)$
\quad (CrystalClear; Rigaku, 2007)	$R_{\mathrm{int}}=0.038$
$\quad T_{\min }=0.840, T_{\max }=0.888$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.092$
$S=1.14$
independent and constrained refinement
1296 reflections
82 parameters
2 restraints
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{\mathrm{i}}$	$0.90(2)$	$2.17(2)$	$3.069(2)$	$174(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots{ }^{\mathrm{i}} 1^{\mathrm{i}}$	$0.87(2)$	$2.16(2)$	$3.024(2)$	$170(2)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are indebted to the Deanship of Scientific Research, College of Science Research Center, for supporting this work. The Distinguished Scientist Fellowship Program (DSFP) at King Saud University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2047).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Kožíšek, J., Díaz, J. G., Fronc, M. \& Svoboda, I. (2005). Acta Cryst. E61, m1150-m1152.
Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Van Albada, G. A., Komaei, S. A., Kooijman, H., Spek, A. L. \& Reedijk, J. (1999). Inorg. Chim. Acta, 287, 226-231.

Van Albada, G. A., Roubeau, O., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2003). New J. Chem. 27, 1693-1697.

Van Meervelt, L. \& Uytterhoeven, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 481-482.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zunszain, P. A., Federico, C., Sechi, M., Al-Damluji, S. \& Ganellin, C. R. (2005). Bioorg. Med. Chem. 13, 3681-3689.

supplementary materials

2-Chloropyrimidin-4-amine

G. van Albada, M. Ghazzali, K. Al-Farhan and J. Reedijk

Comment

The molecule of 2-chloropyrimidin-4-amine is relevant for agrochemistry as a plant growth regulator and as a pharmaceutical intermediate (Zunszain et al. 2005). It could also be an interesting precursor for chelating ligands after chlorine substitution. Pyrimidin-amines are interesting bridging ligands, as they contain two nitrogen coordination donor atoms, and an amine as a hydrogen bond donor group (Van Albada et al. 1999, 2003). The ligands pyrimidin-4-amine and 2-amine can easily bridge two metal ions (Kožíšek et al. 2005). With the presence of two donor atoms, the title compound might serve as a building block in the formation of coordination polymers. Due to the position of a chloride atom in-between the two donor N atoms of the pyrimidin-4-amine, the bridging would be likely to change. In fact, coordination complexes with the 2-chloropyrimidin-4-amine are yet unreachable. We here present the molecular structure of this compound, (Figure 1).

The 2-chloropyrimidin-4-amine molecule is nearly planar, with r.m.s. deviation of the pyrimidine heterocyclic non-hydrogen atoms is 0.002 (2) \AA. In the crystal, molecules are arranged with two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond motifs, where the amine group serves as a twofold donor of the hydrogen atoms for the two pyrimidine nitrogen atoms. Considering graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptors are $R^{2}{ }_{2}(8)$ loops and $C(5)$ chain motifs along the [001] and [010] vectors, respectively. The network can be described as a wobbled two-dimensional network extending in the (100) plane, (Figure 2). It is worth to note that the related pyrimidin-4-amine molecule (Van Meervelt et al. 2003), crystallizes in the orthorhombic Pcab space group and exhibits only the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with $\mathrm{C}(5)$ chain motif of a one-dimensional zigzag chain.

Experimental

The ligand was used as commercially available. 0.5 mg of the compound was dissolved in 10 ml of methanol. The solution was stand at room temperature in a closed vessel. After two weeks, colourless blocks appeared and separated by filtration.

Refinement

Carbon-bound H -atoms were placed in ideal calculated positions [aromatic $\mathrm{C}-\mathrm{H} 0.93 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$] and refined as riding atoms. The amine H -atoms were constrained into their positions using two distance restraints [$\mathrm{N} — \mathrm{H} 0.91 \AA$, $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$.

supplementary materials

Figures

Fig. 1. Atomic numbering scheme and thermal ellipsoidal (50\% probability level) of the title compound. Hydrogen atoms are presented as spheres of arbitrary radii.

Fig. 2. $b c$-plane projection showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds as dotted line of $R^{2}{ }_{2}(8)$ loop (presented in blue color), and $\mathrm{C}(5)$ chain (presented in red color). Symmetry codes: (i) -$x,-y+1,-z+1$; (ii) $x,-y+1 / 2, z+1 / 2$.

2-Chloropyrimidin-4-amine

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClN}_{3}$

$M_{r}=129.55$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=3.83162$ (19) \AA
$b=11.8651$ (7) \AA
$c=12.7608(7) \AA$
$\beta=100.886(2)^{\circ}$
$V=569.70(5) \AA^{3}$
$F(000)=264$
$Z=4$
$D_{\mathrm{x}}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 342 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.55 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colourless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
$T_{\text {min }}=0.840, T_{\text {max }}=0.888$
9506 measured reflections
1296 independent reflections
962 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.038$
$\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.3^{\circ}$
$h=-4 \rightarrow 4$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.092$
$S=1.14$
1296 reflections
82 parameters
2 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0422 P)^{2}+0.0697 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.05814(13)$	$0.43867(4)$	$0.20898(3)$	$0.0586(2)$
N1	$0.3425(4)$	$0.25622(13)$	$0.29987(11)$	$0.0500(4)$
N2	$0.2112(5)$	$0.37262(14)$	$0.59166(12)$	$0.0522(4)$
H2B	$0.277(5)$	$0.3340(17)$	$0.6504(14)$	$0.065(6)^{*}$
H2A	$0.103(5)$	$0.4395(14)$	$0.5959(17)$	$0.061(6)^{*}$
C2	$0.2035(4)$	$0.35294(14)$	$0.32044(13)$	$0.0419(4)$
N3	$0.1530(4)$	$0.39673(11)$	$0.41103(10)$	$0.0407(3)$
C4	$0.2612(4)$	$0.33227(13)$	$0.49910(12)$	$0.0400(4)$
C5	$0.4177(5)$	$0.22616(15)$	$0.48826(14)$	$0.0480(4)$
H5	0.4961	0.1806	0.5473	0.058^{*}
C6	$0.4495(5)$	$0.19310(16)$	$0.38937(16)$	$0.0531(5)$
H6	0.5506	0.1230	0.3818	0.064^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	$0.0718(4)$	$0.0665(4)$	$0.0379(3)$	$0.0003(2)$	$0.0113(2)$	$0.0060(2)$

supplementary materials

N1	$0.0570(9)$	$0.0502(9)$	$0.0447(9)$	$0.0005(7)$	$0.0143(7)$	$-0.0103(7)$
N 2	$0.0775(11)$	$0.0455(9)$	$0.0345(8)$	$0.0079(8)$	$0.0130(7)$	$0.0007(7)$
C2	$0.0431(9)$	$0.0456(9)$	$0.0379(9)$	$-0.0055(7)$	$0.0101(7)$	$-0.0045(7)$
N3	$0.0496(8)$	$0.0380(7)$	$0.0357(7)$	$-0.0010(6)$	$0.0112(6)$	$-0.0019(6)$
C4	$0.0439(9)$	$0.0395(9)$	$0.0372(8)$	$-0.0034(7)$	$0.0092(7)$	$-0.0013(7)$
C5	$0.0533(10)$	$0.0429(10)$	$0.0472(10)$	$0.0047(8)$	$0.0075(8)$	$0.0027(8)$
C6	$0.0550(11)$	$0.0442(10)$	$0.0610(12)$	$0.0047(8)$	$0.0132(9)$	$-0.0092(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.7518(17)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.312(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.363(2)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.322(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$0.874(15)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.902(16)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$112.47(15)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$120.6(14)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$121.3(14)$
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$118(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$130.85(16)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$115.10(12)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{Cl} 1$	$114.05(13)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$115.64(14)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 3$	$117.56(15)$

$\mathrm{C} 2-\mathrm{N} 3$	$1.315(2)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.358(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.412(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.349(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5$	$123.11(16)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.33(15)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$117.77(16)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$123.94(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	118.0
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{H} 6$	118.0

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.90(2)$	$2.17(2)$	$3.069(2)$	$174 .(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.87(2)$	$2.16(2)$	$3.024(2)$	$170 .(2)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+1 / 2, z+1 / 2$.

Fig. 1

Fig. 2

